Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Towards semi-insulating InGaAsP/InP layers by post-growth processing using Fe ion implantation and rapid thermal annealing

Identifieur interne : 000300 ( Main/Repository ); précédent : 000299; suivant : 000301

Towards semi-insulating InGaAsP/InP layers by post-growth processing using Fe ion implantation and rapid thermal annealing

Auteurs : RBID : Pascal:13-0243583

Descripteurs français

English descriptors

Abstract

In this paper, we report on an effective post-growth processing technique for developing semi-insulating (SI) photonic thin films absorbing in 1.3 μm. For that purpose, we examined a 1 μm thick unintentionally n-doped In0.72Ga0.28As0.61P0.39 epilayer (0.95 eV bandgap) modified by multiple-energy MeV Fe ion implantation. Fe was chosen as a deep-level impurity. The ion beam processing was performed at room temperature, followed by rapid thermal annealing (RTA) at 800 °C for 15 s. We investigated the impact of ion fluence on electrical properties by Hall effect measurements. Channelling Rutherford backscattering spectrometry, x-ray diffraction and photoluminescence measurements were carried out to evaluate crystal quality after each fabrication step. Beyond the onset of amorphization, when the total Fe fluence was more than 4.8 × 1013 cm-2, the implanted InGaAsP layer showed evidence of a poor recrystallization after RTA, and its isolation was impaired. Maximum resistivity values were achieved below the onset of amorphization where annealing reduced ion de-channelling and recovered damage-induced strain. With a total Fe fluence of 1.6 x 1013 cm-2, the electrical resistivity and Hall mobility reached values of 1.4 x 104 Ω cm and 4 × 102 cm2 V-1 s-1. These results add important insights on the optimization of this process for the development of InP-based SI photoconductive films.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0243583

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Towards semi-insulating InGaAsP/InP layers by post-growth processing using Fe ion implantation and rapid thermal annealing</title>
<author>
<name sortKey="Fekecs, Andre" uniqKey="Fekecs A">Andre Fekecs</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke</s1>
<s2>Sherbrooke, QC, J1K 2R1</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Sherbrooke, QC, J1K 2R1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chicoine, Martin" uniqKey="Chicoine M">Martin Chicoine</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Département de physique, Université de Montreal</s1>
<s2>Montreal, QC, H3C 3J7</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Montreal, QC, H3C 3J7</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ilahi, Bouraoui" uniqKey="Ilahi B">Bouraoui Ilahi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke</s1>
<s2>Sherbrooke, QC, J1K 2R1</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Sherbrooke, QC, J1K 2R1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schiettekatte, Francois" uniqKey="Schiettekatte F">François Schiettekatte</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Département de physique, Université de Montreal</s1>
<s2>Montreal, QC, H3C 3J7</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Montreal, QC, H3C 3J7</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Regroupement quebecois sur les materiaux de pointe</s1>
<s2>QC</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Regroupement quebecois sur les materiaux de pointe</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Charette, Paul G" uniqKey="Charette P">Paul G. Charette</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke</s1>
<s2>Sherbrooke, QC, J1K 2R1</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Sherbrooke, QC, J1K 2R1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ares, Richard" uniqKey="Ares R">Richard Ares</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke</s1>
<s2>Sherbrooke, QC, J1K 2R1</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Sherbrooke, QC, J1K 2R1</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Regroupement quebecois sur les materiaux de pointe</s1>
<s2>QC</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Regroupement quebecois sur les materiaux de pointe</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0243583</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0243583 INIST</idno>
<idno type="RBID">Pascal:13-0243583</idno>
<idno type="wicri:Area/Main/Corpus">000A30</idno>
<idno type="wicri:Area/Main/Repository">000300</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-3727</idno>
<title level="j" type="abbreviated">J. phys., D. Appl. phys. : (Print)</title>
<title level="j" type="main">Journal of physics. D, Applied physics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ambient temperature</term>
<term>Binary compounds</term>
<term>Electrical properties</term>
<term>Hall effect</term>
<term>III-V semiconductors</term>
<term>Indium Phosphides</term>
<term>Optical materials</term>
<term>Optimization method</term>
<term>Photoluminescence</term>
<term>Photonics</term>
<term>Quaternary compounds</term>
<term>RBS</term>
<term>Strains</term>
<term>Thermal annealing</term>
<term>Thin films</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet Hall</term>
<term>RBS</term>
<term>Photoluminescence</term>
<term>Déformation mécanique</term>
<term>Méthode optimisation</term>
<term>Recuit thermique</term>
<term>Diffraction RX</term>
<term>Température ambiante</term>
<term>Propriété électrique</term>
<term>Couche mince</term>
<term>Composé quaternaire</term>
<term>Indium Phosphure</term>
<term>Composé binaire</term>
<term>Semiconducteur III-V</term>
<term>Matériau optique</term>
<term>InGaAsP</term>
<term>As Ga In P</term>
<term>In P</term>
<term>InP</term>
<term>4270N</term>
<term>phosphoarséniure d'indium et de gallium</term>
<term>Photonique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, we report on an effective post-growth processing technique for developing semi-insulating (SI) photonic thin films absorbing in 1.3 μm. For that purpose, we examined a 1 μm thick unintentionally n-doped In
<sub>0.72</sub>
Ga
<sub>0.28</sub>
As
<sub>0.61</sub>
P
<sub>0.39</sub>
epilayer (0.95 eV bandgap) modified by multiple-energy MeV Fe ion implantation. Fe was chosen as a deep-level impurity. The ion beam processing was performed at room temperature, followed by rapid thermal annealing (RTA) at 800 °C for 15 s. We investigated the impact of ion fluence on electrical properties by Hall effect measurements. Channelling Rutherford backscattering spectrometry, x-ray diffraction and photoluminescence measurements were carried out to evaluate crystal quality after each fabrication step. Beyond the onset of amorphization, when the total Fe fluence was more than 4.8 × 10
<sup>13</sup>
cm
<sup>-2</sup>
, the implanted InGaAsP layer showed evidence of a poor recrystallization after RTA, and its isolation was impaired. Maximum resistivity values were achieved below the onset of amorphization where annealing reduced ion de-channelling and recovered damage-induced strain. With a total Fe fluence of 1.6 x 10
<sup>13</sup>
cm
<sup>-2</sup>
, the electrical resistivity and Hall mobility reached values of 1.4 x 10
<sup>4</sup>
Ω cm and 4 × 10
<sup>2</sup>
cm
<sup>2</sup>
V
<sup>-1</sup>
s
<sup>-1</sup>
. These results add important insights on the optimization of this process for the development of InP-based SI photoconductive films.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3727</s0>
</fA01>
<fA02 i1="01">
<s0>JPAPBE</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., D. Appl. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>46</s2>
</fA05>
<fA06>
<s2>16</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Towards semi-insulating InGaAsP/InP layers by post-growth processing using Fe ion implantation and rapid thermal annealing</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FEKECS (Andre)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHICOINE (Martin)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ILAHI (Bouraoui)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SCHIETTEKATTE (François)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CHARETTE (Paul G.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ARES (Richard)</s1>
</fA11>
<fA14 i1="01">
<s1>Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke</s1>
<s2>Sherbrooke, QC, J1K 2R1</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Département de physique, Université de Montreal</s1>
<s2>Montreal, QC, H3C 3J7</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Regroupement quebecois sur les materiaux de pointe</s1>
<s2>QC</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s2>165106.1-165106.7</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5841</s2>
<s5>354000173346580100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>31 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0243583</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. D, Applied physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper, we report on an effective post-growth processing technique for developing semi-insulating (SI) photonic thin films absorbing in 1.3 μm. For that purpose, we examined a 1 μm thick unintentionally n-doped In
<sub>0.72</sub>
Ga
<sub>0.28</sub>
As
<sub>0.61</sub>
P
<sub>0.39</sub>
epilayer (0.95 eV bandgap) modified by multiple-energy MeV Fe ion implantation. Fe was chosen as a deep-level impurity. The ion beam processing was performed at room temperature, followed by rapid thermal annealing (RTA) at 800 °C for 15 s. We investigated the impact of ion fluence on electrical properties by Hall effect measurements. Channelling Rutherford backscattering spectrometry, x-ray diffraction and photoluminescence measurements were carried out to evaluate crystal quality after each fabrication step. Beyond the onset of amorphization, when the total Fe fluence was more than 4.8 × 10
<sup>13</sup>
cm
<sup>-2</sup>
, the implanted InGaAsP layer showed evidence of a poor recrystallization after RTA, and its isolation was impaired. Maximum resistivity values were achieved below the onset of amorphization where annealing reduced ion de-channelling and recovered damage-induced strain. With a total Fe fluence of 1.6 x 10
<sup>13</sup>
cm
<sup>-2</sup>
, the electrical resistivity and Hall mobility reached values of 1.4 x 10
<sup>4</sup>
Ω cm and 4 × 10
<sup>2</sup>
cm
<sup>2</sup>
V
<sup>-1</sup>
s
<sup>-1</sup>
. These results add important insights on the optimization of this process for the development of InP-based SI photoconductive films.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B70N</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Effet Hall</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Hall effect</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>RBS</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>RBS</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Déformation mécanique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Strains</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Méthode optimisation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Optimization method</s0>
<s5>23</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Método optimización</s0>
<s5>23</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Recuit thermique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Thermal annealing</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Recocido térmico</s0>
<s5>30</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>XRD</s0>
<s5>31</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Température ambiante</s0>
<s5>41</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Ambient temperature</s0>
<s5>41</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>42</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>42</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>47</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>47</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Composé quaternaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Quaternary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indium Phosphure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium Phosphides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>55</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>55</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>56</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>56</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Matériau optique</s0>
<s5>57</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Optical materials</s0>
<s5>57</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>InGaAsP</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>As Ga In P</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>4270N</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>phosphoarséniure d'indium et de gallium</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Photonique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Photonics</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>231</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000300 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000300 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0243583
   |texte=   Towards semi-insulating InGaAsP/InP layers by post-growth processing using Fe ion implantation and rapid thermal annealing
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024